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OLIGOMER COMPATIBILITY BY CONTINUOUS 

MARGIT T. UTZSCH,  HORST KEHLEN, and DETLEF THIEME 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

To describe the details of the liquid-liquid equilibrium of oligomer mix- 
tures, it is essential to use Gibbs free energy functions generalizing the 
classical Flory Huggins relation by replacing Huggins’ X-term by a func- 
tion depending on the averages of the molecular weight distributions. 
In this paper the concept of continuous thermodynamics is applied to 
establish a simple calculation procedure for the number-average segment 
number. Instead of the well-known sums with respect to the species, 
integrals occur which, in the case of Schulz-Flory distributions, may be 
calculated analytically, leading to simple formulas for the cloud-point 
curve and the shadow curve. The method is applied to  model cdcula- 
tions showing that the chosen Gibbs free energy function may account 
for the details of the liquid-liquid equilibrium of oligomer mixtures and 
to  a real oligomer system taken from the literature. 

I NTR ODUCTl ON 

The cloud-point curve of polymer mixtures usually possesses a relatively 
simple shape. However, for mixtures of oligomers this curve often exhibits 
features like asymmetry, shoulders, or two extrema. Similar statements apply 
to the spinodal curve. 
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992 RATZSCH, KEHLEN, AND THIEME 

To understand such curves, an appropriate expression for the Gibbs energy 
is needed. Generalizing the classical Flory-Huggins relation, the change of 
Gibbs free energy of mixing AMG per mole of segments for polymer systems 
or oligomer systems can be written as 

Here R is the gas constant, T is the temperature, ri is the segment number, 
and t)i is the segment fraction. The sum is to be extended over all species i 

present in the mixture. The quantity zE is called the segment-molar excess 
Gibbs free energy. I t  generalizes the X-term of the Flory-Huggins relation so 
as to account for more sophisticated Gibbs free energy expressions. 

were applied, such as the extended Huggins concept [ 11 , the free volume 
theory [ 2 ] ,  or replacement of the yparameter by a quadratic function of the 

segment fraction [3]. In all these cases, E E  is assumed to be independent of 
the molecular weight distributions (MWD) of the oligomers involved. There- 

fore, # is also not influenced by the transition from oligomers to polymers 

or vice versa. However, the zE function is crucial for describing the liquid- 
liquid phase equilibrium. Thus, the discussed independence means that the 
Gibbs free energy functions mentioned are unable to account for the essential 
changes of the liquid-liquid equilibrium being connected with the transition 
between polymers and oligomers. 

mers or oligomers considered. Koningsveld et  al. [3] applied Silberberg’s 
entropy-of-mixing expression to calculate spinodals. However, on account of 
the complexity of this expression, the more complicated calculation of cloud- 
point curves and shadow curves would be very computer-intensive for the 
polydisperse case. 

of the number average of the segment number. Cloud-point curves, shadow 
curves, spinodals, and critical points of oligomer mixtures will be calculated. 

The calculation of the cloud-point curves and shadow curves is very much 
simplified by applying the method of continuous thermodynamics [4-71. 
This method consists in using the continuous distribution density functions 

For describing the features of oligomer mixtures, different relations 

- 

Hence, zE functions have to be used that depend on the MWD of the poly- 

In this paper another cE relation is used that depends on the MWD by means 
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OLIGOMER COMPATIBILITY 993 

directly (i.e., without arbitrary splitting into pseudocomponents) within the 
framework of thermodynamics. Accordingly, the well-known sums of tradi- 
tional thermodynamics are replaced by integrals which may be calculated 
analytically for Schulz-Flory distributions. In this way simple closed formulas 
which are easy to handle are obtained instead of the usual sums which have to 
be calculated numerically. 

LI QUI D- Ll  QUl D EQUl LI BR I UM 

The chemical potential forms the starting point for ccnsideration of phase 
equilibria. According to Eq. (l), the chemical potential Ei of a species i per 
mole of segments reads 

The first term on the right-hand side is the chemical potential of the pure 
species i, and 6 is the nuqber-average segment number for all species in the 
mixture.-The term R T  In yi generajizes the X-term in the classical Flory- 
Huggins Gi relation. The quantity Ti is called the segment-molar activity 

&efficient and may be calculated from zE. 
polymer or oligomer B are identified by a continuous variable, i.e., the 
molecular weight M instead of the discrete index i The relation for the 
chemical potential per mole of segments reads [S] 

In applying continuous thermodynamics, the species of a poly disperse 

The segment fractions #i of the discrete species i are replaced in continuous 
thermodynamics by the product #BWB(M) where QB is the overall segment 
fraction of the polymer or oligomer B and W,(M) is the distribution density 
function defined by the statement that W B ( M ) ~ M  is the relative segment 
fraction of all &species with molar masses betweenM andM +*iiM Hence, 

I W B ( M ) d M =  1. (4) 
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994 RATZSCH, KEHLEN, AND THIEME 

The integral is to be taken over the entire M range. Furthermore, the transi- 
tion to continuous thermodynamics leads to including an additional term in 
the concentration-independent reference term &3'(M, T,P) [ 5 ] .  

In continuous thermodynamics the equilibrium condition between two 
phases ' and " for systems containing two polydisperse polymers or oligomers 
B and C reads 

These conditions are valid for the total range of M values. The relation for 
&(M) is obtained by substituting C for B in Eq. (3); J I B  t J/c = 1. 

for &M) and Tc(M) resulting from the applied EE model. If E E  does-not 
depend on the distribution density functions, W,(M) and Wc(M), then ?B 
and Tc are also independent of these functions and, furthermore, they do not 
depend on M. This is the case for the simple Huggins x concept (c = d = 0 in 
Eqs. 6 and 7) and for its generalization by substituting a quadratic J I B  poly- 
nomial for x: 

The mathematical problem involved in Eqs. (5) depends on the expressions 

E E  
- = P ( T ) J / B ( ~  - J / B ) [ ~  + ~ J / B  + ~ J / B '  I (6)  RT 

If, however, E E  cjepends on WB(M) and Wc(M), the segment-molar activity 
coefficients and ?c depend also on W,(M) and Wc(M), and they are actu- 

ally functions of M An example is provided by the eE model mainly used in 
this paper, 

- 

This relation is similar in some respect to a relation used by Kennedy, Gordon, 

and Koningsveld [8] for considering polymer solutions. Here, G E  depends on 
the distribution density functions since 6 is given by 

- 
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0 LI GOM E R COMPATI B I L ITY 995 

The relations for 7~ and 7~ read 

Applying Eqs. (3) and (lo), the phase equilibrium condition, Eq. (9, re- 
sults in 

(1 1) 
QB’ 

$B” 
WB”(M) = - WB‘(M) exp [uB + 7Brg(W] 

with 

and analogous relations for the ensemble C. 
Considering the composition of the phase ‘ (i.e., $B‘, WB’(M), Wc’(M)) 

and the pressure P to be specified, the function T($B’) describes the cloud- 
point curve, and the function T($B”) describes the shadow curve. Hence, 
Eq. (1 1) and the corresponding relation for the polymer or oligomer C pro- 
vide immediately the distribution density functions WB”(M) and Wc”(M) of 
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0 LI GOM ER COMPATl BI Ll TY 997 

STABILITY 

Investigations of phase stability lead to equations for the spinodal (i.e., 
the limit of instability) and the critical point. In the framework of this paper, 
the traditional Gibbs ideas for treating the critical state are applied and the de- 
tails for the direct surroundings of a critical point (compare, e.g., Ref. 9) are 
not accounted for. The considerations may be applied to the discrete as well 
as to the continuous basis. 

If EEdoes not depend on the distribution density functions W,(M) and 
Wc(M), such as in Eq. (6),  the treatment leads to relatively simple equations 

[ l ,  10, 113. If cE depends on these distribution density functions, stability 
considerations become more complicated [8, 121. In the case of Eq. (8), 
where this dependence is provided by the occurrence of the number-average 
segment number yn, the relation for the spinodal reads 

- 

At the critical point, the following equation must also be valid : 
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998 RATZSCH, KEHLEN, AND THIEME 

The parameter 

- 
was introduced in these equations. The symbols r w , ~ ,  r , , ~ ,  and the corre- 
sponding C quantities are the weight-average and the z- average, respectively. 

MODEL CALCULATIONS 

The aim of these calculations is to show how the Gibbs free energy rela- 
tion, Eq. (8), permits the description of the features arising for transitions 
from polymer mixtures to oligomer mixtures. In the model calculations, the 
following values were applied: m , ~  = 3 1.12F; k~ = 3.46; y,, c = 26.36F; 
kc  = 1.80; y = -0.478; Q = -17.40. To avoid the use of a specific relation 
for p(T), instead of T, the quantity l/P(T) was considered; this proved to be 
roughly proportional to T. 

The transition from polymer mixtures t o  oligomer mixtures was pro- 
vided by reducing m , ~  and m , ~  by a common factor F (Fig. 1). For F =  1 
the cloud-point curve and the shadow curve show the well-known shape from 
polymer mixtures (Fig. la). 

With decreasing F, special features arise with the occurrence of a hetero- 
geneous double plait point (in the terminology by Korteweg [ 131 ) on the 
spinodal at $B = 0.63 and l/P(T) = 4.09. This heterogeneous double plait 
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OLIGOMER COMPATlBl LlTY 999 

point corresponds to the coincidence of a metastable and an unstable critical 
point, which separate from each other on further decreasing F. Figure l(b) 
shows the cloud-point curve and spinodal close after the occurrence of the 
heterogeneous double plait point: The two new critical points ($rstable < 
$getastable) are still close together. On further decrease of the factor F, the 
distance between the two new critical points on the spinodal increases, and, 
furthermore, the metastable critical point approaches the cloud-point curve. 
In Fig. l(c), corresponding to F =  0.666, this point is already situated beyond 
this curve, i.e., the metastable critical point has become a stable one. And the 
attached cloud-point curve is also partially situated in the stable range. It in- 
tersects the original cloud-point curve at the triple point describing the coex- 
istence of three different phases. This triple point divides the original and 
the new cloud-point curves into stable and metastable parts. (Of course, a 
cloud-point curve attached to the unstable critical point may also be calcu- 
lated, but it is situated in the unstable range and, hence. is not of practical 
interest.) 

EXAMPLE 

As an example, a polystyrene t poly(methylpheny1siloxane) mixture 
investigated by Nose and coworkers [14] will be considered. Both poly- 
disperse components can be characterized by Schulz-Flory distributions and 
the parameters are for polystyrenean = 8490 glmol, k = 16.7 and for poly- 
(methylphenylsiloxane) gn = 1780, k = 1.75. Hence, at least the poly- 
(methylphenylsiloxane) is an oligomer. 

As pointed out earlier [7], no consistent description of the experimental 
cloud-point data and the experimental critical point could be obtained when 

a E E  relation was applied replacing Huggins x parameter by a linear function 
of $B (i.e., Eq. 6 with d = 0). This result was in contrast to the calculations 
for some polystyrene t poly(viny1 methyl ether) systems containing real 
polymers. 

Hence, the more refined E E  relations, Eqs. (6) and (8), were applied to 
obtain a good fit to the experimental cloud points as well as to the experi- 
mental critical point. In both cases, B means polystyrene, and j (T)  was 
assumed to follow 
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FIG. 1. Results of model calculations. Cloud-point curves: stable (heavy 
lines); metastable (dashed lines); spinodal (light lines). Critical point (=I; 
triple point (0). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



OLIGOMER COMPATlBl LlTY 

1 
40 

15.0 

4.0 

3.0 

0.5 1 
VB __c 

bl F= 0.885 

1001 

3.0 

2.0 

1.0 

I 0.5 1 

I 

___c 

C) F=  0.666 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



0 1.0 
VPsl - 0.5 

a) Equation (6) 
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I100 
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K i  
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b) Equation (81 

FIG. 2. A polystyrene + poly(methylpheny1siloxane) blend. Experimental 
data: cloud points (0) and critical point (0). Calculations by means of a model 
equation. Heavy lines, cloud-point curves; dot-dashed lines, shadow curves; 
light lines, spinodal. Critical points (m); triple points (0). 
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For Eq. (6), the fit led to a = -0.00020M~/(g/mol), b/K = 0.2557M~/(g/mol), 
c = - 0.164, d = 0.4094; and for Eq. (8) to a = - 0.001 14M~/(g/mol), b/K = 
0.4957M~/(g/mol), y = - 0.775, Q = -13.89, where M s  is the molecular 
weight of a segment which was considered to be approximately equal for both 
polydisperse components. For the calculations, MS = 100 glmol was used. 
The result of the fits and the calculated shadow curves and spinodals are 
shown in Fig. 2. It can be seen that a good fit to the experimental cloud 
points and the experimental critical point is achieved in both cases. Equation 
(6) has the disadvantage of lacking dependence on averages of the MWD. If 
such a dependence is introduced, it usually results in a further increase in the 
number of parameters. Equation (8) contains only four parameters, like Eq. 
(6), but depends on the number-average segment number. For the case of 
this equation, some special features are predicted: the occurrence of two 
stable critical points situated on the same cloud-point curve and of an unstable 
critical point between them. Furthermore, the occurrence of a triple point, 
i.e., of a three-phase equilibrium, at lower temperatures is predicted. Whether 
these predictions correspond to the true behavior cannot be said without 
knowledge of further experimental details. 
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